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THE USE OF SPHERICAL HARMONICS IN SUBOPTIMAL ESTIMATOR DESIGN*

Steven I. Marcus

Department of Electrical Engineering
The University of Texas at Austin
Austin, Texas 78712

Abstract

The state estimation problem for bilinear
stochastic systems evolving on spheres is con-
sidered. The problem is motivated by some appli-
cations involving rotational processes in three
dimensions. Then the theory of harmonic analysis
on spheres {s used to define assumed density
approximations which result in implementable
suboptimal estimators for the state of the bilinear
system.

<

ﬂ 1. Introduction
' Fourier series analysis has been applied

in several recent studies [1]-[4] to estimation

problems for stochastic processes evolving on

the circle Sl . Willsky [4] used Fourier series
methods to define “assumed density" approxima-~

. tlons for certain phase tracking and demodulation
problems. In fact, a system designed using these
techniques performed better than other estimators,
including an optimal phase-lock loop.

In this paper we study bilinear systems
evolving on spheres (the more general case of
systems evolving on compact Lie groups or homo-
geneous spaces is discussed in [13]). The optimal
estimator is in general infinite dimensional (7],
and our approach to the design of suboptimal
estimators is a generalization of that of Willsky
[4), whose work is described in Section 3. The
basic approach involves the definition of an
*assumed density" form for the conditional density
of the system state at time t given observations
up to time t. These densities are defined via the
techniques of harmonic analysis on spheres (5],

* This work was supported by NSF under Grant
GK-42090 and by AFOSR under Grant 72-2273, and

"By an NSF Fellowship (S.I. Marcus), It is based
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[6] (which generalize the Fourler serles on the Lie

group sl). Our method differs from most previous
assumed density approximations in that our ap-
proximation is defined on the appropriate compact
manifold (as opposed to Gaussian approximations,

for example, which are defined on R" [7]).

In Section 2 we discuss some general
properties of stochastic bilinear systems and pre-
sent an example involving satellite tracking.

The use of harmonic analysis will be motivated by
the phase tracking example of Willsky (4] in Sec-
tion 3. In Section 4, we discuss the optimal

estimation problem on the 2-sphere 8z and the
application of harmonic analysis to the design of
suboptimal estimators.

2. Stochastic Bilinear Systems

®  The basic stochastic bilinear system con-
sidered here is described by the Ito stochastic
differential equation (4], (9], [10], [12]), (13],
[141-(161, D171, (18].

dx(v) = (A, + # g Q,. (A A Jdt
07 B4 U1y

s ﬁ Adw (0 )x() m

i=1l

where x is an n-vector, Al are n x n matrices,
Qu is the (i,j)th element of Q, and w is a Browni-
an motion (Wiener) process with strength Q(t)
such that E[w()w'(s)] = _‘mn(t")c(f)d'r . Fol-

lowing the notation of (8]-[101, (11], we define
£={Ag.A),....AG), , to be the Lie algebra con-

taining these matrices. The corresponding con-
nected matrix Lie group is denoted by Gg[gxm:]é.
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Then the solution x(t) of (1) will evolve on the
homogeneous space G-x(0) (1.e., x(}€ Gx(0) for
ail t20) in the mean-square sense and almost
surely [15], [16).

Assoclated with the Ito equation (1) is a
sequence of equations for the moments of the state
x(t). first derived by Brockett [9], (10), [14], 1If

N(n,p) denotes the binomial coefficient (m:'l) L

then glven an n-vector x, we define xl:p:l to be the
N(n, p)-vector with components

i Blaiion

P
-xllxzz. : .xn" ; z; P, = Pi P20 (2)

(ordered lexicographically). These components
are the monomials ( or homogeneous polynomials)
of degree p in XyooeesX . the components of x,

scaled so that [ixj® = nx[p]ll. Given an mxn

matrix A, we denote by A Pl the unique matrix
which verifies

y = Ax -)y[p] AL (&)

It is clear that if x satisfies the llnear differential
equation

x(t) = Ax(t) (9

then x[’] also satisfies a linear differential equa-
tion

£Ply - Amx["]m : )

We regard this as the definition of A[p] . which is

the infinitesimal version of A[p] . In fact, A[p] can
be easily computed from A [17]. Brockett has

shown that if x satisfies (1), then x satisfies
the Ito equation

axtPly = A, +# i Q VA, A ]x[p](t)nt
p) 1.5=1 {p) °[p)

+in1 #tP aw, (0 ®
=1 "[p]

As we shall see in the sequel, the sequence of
moment equations is a valuable tool in the study of

The observation model considered in this
paper consists of linear observations of the state
corrupted by additive white noise, or

az(t) = H(x(ddt + u*(odvm (n

where z is a p-vector, R>0, and v is a Wiener
process. This bilinear system-linear observation
model is useful ir the study of certain practical
problems, as illustiated by the following example.

Consider a satellite in circular orbit about’
some celestial body. Because of a varlety of
effects including anomalies in the gravitational
field of the body, effects of the gravitational
fields of nearby bodies, and the effects of solar
pressure, the orbit of the satellite is perturbed.
In this case, the position x of the satellite can
be described by the simplified bilinear model [18)

dx(t) -ﬂ:‘g f,(OR, + *,,};"u‘”"x“s]“'

+ g:i thw‘(t)}x(t) (8)

where . '
0 0O 0 0 1 0-1 0
Rl- 0'0-1 Rz- 0 0O R3- 1 00
01 0 -1 0 0 0 0 O
(9

form a basis for so(3), the Lie algebra of 3x3 skew-
symmetric matrices. Also, !‘ are the components
of the nominal angular velocity and w‘ are the
components of a Wiener process with strength Q(t).
If E[x'(0)x(0))=1, then E[x'(t)x(t)]=1 for all t; thus

x evolves on the 2-sphere 82 (the same statement
can be made almost surely [15],[16]). We note
that the assumption in (8) that the perturbations
in the angular velocity are white is a simplifica-
tion [13], but the simplified model (8) can lead to
simple but accurate on-line tracking schemes. If
we are then given the noisy observations (7) of
the satellite position, the problem is to estimate

x(t) given the past observations oy {=(s) ,0g8st).

3. A Phase Tracking Problem on 81

We first discuss a phase tracking problem
studied by Bucy, et al, (1] and Willsky (4], in
which the phase 6 and the observation z are
described by

de() = s at + a¥(gaw(e, o=,  (10)

dz(t) = s'n o(t) dt + r‘(t) av(t) (11)

state estimation. :
' \.‘. o

&
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where v and w are independent standard Brownian
motion processes Independent of the random initial

phase Oo. We wish to estimate ¢(t) mod2n given

:‘, and we take as our optimal estimation criterion
the minimization of

El(1-cos(e(t) - T(t)) |z(s), 0<s=t] (12)

where this notation denotes the conditional expec-
tatlon given the o-field o(z(s), 0=s <t} generated
by the observation process up to time t.

Noting that we are essentially tracking a

point on the unit circle s‘, we reformulate the
problem in Cartesian coordinates. Let x = sin 6(p),

X, = cos 9(t). Then

x, (8] Fatav2 w atead (aw(d] [, (3
%, o duatmawmn  -awavz ||k,
' (13)

az() = x, (9t + rF av(y (14

which are of the bilinear process - linear measure-
ment type discussed in Section 2.

In Cartesian coordinates our estimation
problem is to choose an estimate (X, (1) ,%, (1) on
the unit circle. If we use the constrained least
squares criterion
1=3ELGx, (0-%, ()40, (0-%, (00 12() 05828 (15)
subject to ?lz(tk;zz(
to :'?l(t) = sin WY, %(t) = cos §(t) our criterion

reduces to the criterion (12) used in [1] and [4].
One can show (1], (4] that

a',m.Sr,(o)-(il(:lu.izulov\l;‘f(:|o+§:u|» 16)

or
W0 = wa” & (t]0/%y (¢ |) (17

where the conditional expectation iz denoted by
the equivalent notations

i‘(qoh&‘(» |2(s), 0sssOBE'x(v] . (18)

As discussed in [1] and [4], the optimal
(constrained least-squares) filter is described as
follows. The conditional probability density of
8 given (z(s), Oss<t] can be expanded in the
Fourier series

ple.t) = ﬁ enwo"" (19)

t)=1, or equivalently subject

where

c (0 S ;l; gl iRV |z(s).0s85t) S b, (U-ta_(1). (20)

Then the optimal filter is given by
2
n_
dcn(t) = -[zmc +3 q(t)]cn(t)d:

(t

c__,(-c
Bl el gnc mimte, (o) LU 2
0 = an” (o, 0/, () (22)

where dw(t) = dz(t)+2rlm(c1(t))dt o

The structure of the optimal filter is that of
an infinite bank of filters, but the equation for €,

is coupled only to the filters for % Cp-1° and
Cnel® This fact plays an important part in the

following approximation. In order to construct a
finite-dimensional suboptimal filter, we wish to
approximate the conditional density (19) by a den-
sity determined by a finite set of parameters.
Following Willsky [4], we assume that p(e,t) is a
foldec normal density with mode T(t) and “variance”
y(t): .
1 = _-n“y(8/2 tn(e-q(v)
Po.0 = 5= n_z.:_o et il

= F(e: 7(t), v(v) . (23)

The folded normal density is the solution of the
standard diffusion equation on the circle (i.e., it

is the density for s‘ Brownian motion processes)
and i{s as important a density on 8l as the normal

is on Rl: this point will be discussed in more de-
tail in the next section. In this case, if < has

been computed and if p(9,t) satisfies (23) then
SN+ 21 be computed (for any N) from the equation

b 781

Thus the bank of filters described by (21) can be
truncated by approximating CNel by (24) and sub-

stituting this approximation into the equation for

Lo This was done for N=1 in [4], and the result-

ing Fourier coefficient filter (FCF) was compared
to a phasa-lock loop and to the Gustafson-Speyer
»gtate-dependent noise filter” (SDNF) [19]. The
FCF performed consistently better than the other
systems, although the SDNF performance was quite
close.

2
- (zw) WO-I) 'llcl Ium+l)clm‘.'l). (z‘)
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4. Estimation on 82

This sectlon is devoted to the study of the
estimation problem for the system with the bilinear
state equation (1) with the linear measurement (7),
where the matrices {At’ i=1,2,3} are given by the

skew-symmetric matrices [al: i=1,2,3) of (9).

This system is motivated by the satellite tracking
problem of Section 2; as discussed there, the state

x(t) evolves on the 2-sphere 32.

The estimation criterion which will be used
for this problem is the constrained least-squares
criterion, which is analogous to the criterion dis-
cussed in Section 3 for the phase estimation prob-
lem. Thatis, we seek X (t|t) which minimizes

J= ELG() - R(t|0)* 6e® - R(tjo) =) (25)

subject to the 82 constratnt [I%(¢]v))? =

X(t|9'X(t]Y = 1. It is easily shown [13] that the
optimal estimate is

X(t)t) = x(e|o/lix |0l (26)

where “ denotes conditional expectation given the
o-field generated by the past observations (see

(18)). Thus we must compute the conditional ex~
pectation of the state x(t) given the past observa-

tions z° = {z(s) , 0s8 <t} .

The equations for computing the conditional
expectation can be derived from the general non-
linear filtering equation [7, p, 184) and the moment
equation (6). The resultant equations are

Gt[x[p](t)]'[A +# io (A A ) :
gt 1 g g O

+ EP o 012 P wet e ) ln-ma“mc(:zv;)»

dv(t) = dz(9 - HOx(t|ddt (28)

The structure of these equations is quite
similar to that of (21)--i.e., the estimator consists
of an infinite bank of filters, and the filter for the
pm moment is coupled only to those for the first
and (p+l)" moments. Therefore, we are led to
the design of suboptimal estimators. Motivated by
the success of Bucy and Willsky's phase tracking

example evolving on s‘, we would like to design
suboptimal estimators for the 82 system using
similar techniques.

2
In our discussion of estimation on S, we

will refer to a point on s’ in terms of the Cartestan
coordinates x "‘1"‘2"‘3’ or the polar coordinates

(0.9) (see the Appendix, in which harmonic analy-

sis on 8z is summarized). We first review the
notions of Browntan motion and Gaussian densities
on homogeneous spaces, which have received much
attention in the literature (see [S],[21)). Yosida
[21) proved that the density p(x,t) of a Brownian
motion process on a Riemannian homogeneous

space M (such as sz) with respect to the lucmcn-"
nian measure is the fundamental solution of

aplx,1)/at - G* p(x.t) = 0 (29)

where G* {s the formal adjoint of a differential
operator expressible in local coordinates as

2
G= £ _L,._ Q N (30)
g 1 1?21 U ax,ax,

with constant fand Q = Q' 2 0. In particular, if G
is the Laplace-Betrami operator (Laplacian) ‘82 on

82 (see (A.4)) which is self-adjoint [S], the funda-
mental solution of

aple, 9,80/t - Yap(8,9,8) = 0 (31)

where Y > 0, u.srownunnouonousz. Accord -

ing to [5], the fundamental solution of (31) is
given by

p(.n.lt:.on’ontoh‘go mg‘y‘-‘.odv".(.on’o)

oxpl-£(£+ 1 (t-t)V) @2)

where (Y‘.. -2 €m g 2} are the spherical har-

monics of degree £ (defined in (A.2),(A.3)). The
function p(0,¢.t; |°.Q°.t°) is the solution to (31)

with Initial condition equal to the singular distri-
bution concentrated at (0,¢) = “o"o" Also,

Grenander [20] defines & Gaussian (normal) density
to be the solution of (29) for some t.

The folded normal density F(9; 1, y) used by
Willsky as an assumed density approximation for
the phase tracking problem is indeed a normal den-

sity on 81 in the sense of Grenander (4]. Motiva-
ted by the success of Wilisky's suboptimal filter,
we will design suboptimal estimators for bilinear

systems on 8: by employing a normal assumed
conditional density of the form :




ple.o.0= 2 t‘ Y, (0@ (00,2 (1)

4=0 m=-
+ exp(-2(2+1)v(t)) (33)
where T(t), A(t) and y(t) are parameters of the den-

sity which are to be estimated. In other words,
the "generalized Fourier coefficients"

2n _n
€yl = j; _/o' ¥, (8(0), 9(0)p(8, 9, Vsin 0

= £ty (000, 0(0) (34)
are assumed to be
€y m® = ¥y (10 Ae™ 4O o)

In order to assume the existence of the conditional
density, it is sufficient to assume & technical
controllability condition [13].

" In order to truncate the optimal estimator
(27) after the N'® equatton (for X2V (¢|0) using the
assumed density (33), we must compute
E'Ixm (x'(t)], or equivalently, xm *l](tlt), in

terms of x[p](tlt) p=1,2,...,N. However, if
x(t|t) 1s known, so are cm(t) and c,,(t), and a

simple computation yields
v = -}!oc[igl (cfo(t)n le,,(® |’)] (36)
cos 0 = ¢, (/I 0+ 2[c, 0P @7
sin 10 = 2/Z e, (0 V] 0+ 20c) 0 AF. ©o)

It € l(t) = 0, then the density is independent of
A(t); otherwise,
exp(21A(8) = cf,(8/c, (8 . (39)

Then [°u+1.n' m = -(N+1),...,N+1} can be com-
puted from

N+ 1, m® = NH Y O Alt)) exp(=(N+1)(N+2) y(t)

®
="t p ( Clo )
Nelom\c? ezl 0)h?,

(N+1)(N+2)

e\ ey
(z) [ ( cho0+ 2ley, 1) (40)

= {N+1-m)! 2N+3
where o (N+1+m)! ——" .
The decomposition of (A.S) of homogeneous

polynomials of degree n (restricted to 82) in terms
of the spherical harmonics of degree < n implies
the existence of a nonsingular matrix l' such that

P ™ - v, A PORRR'Y ) N 011
where Y‘(x) is the (2 £+1)-vector whose components
are the spherical harmonics {Y me =8 smsg )} of

degree £ and 8 {s zero or one depending on whether
n is even or odd. Specializing this result to the
present approximation implies the existence of a .

nonsingular matrix PN 1 such that

P

Rt P N | (42)

Thus ;cm"u(tlt) can be computed from [c"u- m’
-(N+1) £m $N+1} and -l u(tlﬁ. The optimal
estimator (27) is truncated by substituting this

approximation for im ](tlt) into the equation for

im(:m.
We note that one can show that

o) & /e[l <1 (43)

and this quantity can be used as a measure of
our confidence in our estimate. Specificslly, 1f
x(t|t) satisfies the assumed density (33),

oft) = R jof = YO

80 y= 0 (zero "variance”) implies o= 1, and
Y = o (infinite "variance”) implies o= 0 (see [4]

for the S analog).

(49

Example: Suppose that we truncate the

‘ optimal 82 estimator (27) after N = 1--{.e,, we

approximate :.clzl(tlt) using the above approxima-
tion. The resulting suboptimal estimator is (for
Qt) =1)

ax(t|y = A+ 3 f:‘Afh‘:ulm
i=

+ POH(9R™ )z, () - H(OZ(E[ad (45)
vhere the "covariance* matrix P(t) is glven by

ol i




= e P S

P = X (e lo IRt |0l - 1

- e e jusiR e ol + 3 (46)
for i#), 14k, 1 ¥k, and
P, (0 = Q"(tlt);,(tlt)(ll;(tlt)ll -1y (4n

for i # ). Notice that, from (44), [Ix(t|t)|l = 1 im~
plies that the "variance” y(t) = 0; in fact, if
Ix(tlt)x = 1, we see from (46)-(47) that the co-
variance matrix P(t) is identically zero. Thus if
ix(t|0]l = 1, this first order suboptimal filter as-
sumes that it has perfect knowledge of x(t) an*
disregards the measurements,

S. Conclusion

In this paper we have considered the esti-~
mation problem for bilinear stochastic systems
evolving on spheres. The techniques of harmonic
analysis have been applied to the design of sub-
optimal estimators for such systems. The per-
formance of these estimators is presently being
investigated by means of computer simulation, and
the results will be presented in a future paper.

Appendix - Harmonic Analysis on 82
Any point (x 1° %2 x3) on the 2-sphere

8 = {xeR |x'x = 1} can be expressed in the polar
coordinates (9,9). where 0 £ 9w, 0 £9 <2y,
by defining

X = cos®; Xy = sin®cosy; Xy = sinésing. (A.1)
Harmonic analysis on s2 is studied in terms of the

spherical harmonics [6],(22],[23]; the normalized

spherical harmonics of degree £ on sz are defined
by (6]

" ¥
gm0 = (0P[R AT, - coyg!me
(a.2)

Y, (09 = -07y (0.9 (A.3)
for £=0,1,...and m = o,l,....z. where é‘m
(cos®) are the associated Legendre functions and
* denotes complex conjugate.

Let ?‘ denote the space of homogeneous

polynomials of degree 4 on l!3 (t.e.,

y }
!(c:xl ,cxz,cxa) =c “"1"‘2"‘3»' Then thezspaco
H 1 of spherical harmonics of degree £ on S~ can
be characterized In the following equivalent ways:

(1) the restriction b«lz-'olm subspace of

which is orthogonal to the subspace [(x}o x:+ x:)
'!‘xlo .o ..!3)"6"_ ]

(2) the eigenspace of the Laplacian Asz on 8z
with eigenvalue -£(2+1), where [9)

g 3 c
aemed)s L “z - A9

852" Sine 20
Property (1) implies that each fe 0‘ has a unique
expansion 2

2)
2 Idl™ £, 5, 0.9

where !‘ zj ‘ -23 and [t] 1s the largest integer

< t (Brockett [9] also discusses this point). One
can show [22, p. 109] that the span of [H‘.

2=1,2,...] is dense in the space of continuous

functions on s2 and in Lp(sz), lsp<ce,
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